Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci Technol ; 61(3): 528-538, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38327854

ABSTRACT

This work aims to produce a virgin coconut oil (VCO) creamer through two drying stages; spray drying followed by fluidised bed drying, and to examine its antioxidant properties and oxidative stability during different storage conditions. Evaluation of the physicochemical properties of spray dry VCO and oxidative stability of the VCO creamer were performed using peroxide value (PV), antioxidant activity (DPPH), and total phenolic content (TPC) at 25, 4, and 25 °C, respectively, for 8 weeks. Agglomeration process has improved the agglomerated VCO creamer's properties in terms of moisture content (4.34%), solubility (85.2%), water activity (0.32%), and bulk density (0.36 g/cm3). The morphology of agglomerated VCO creamer showed cluster and irregular shapes with enlargement in the particle size, (d32) 395 µm and (d43) 426 µm. The overall oxidative results showed stability for the agglomerated VCO creamer stored at 4 °C in terms of TPC, DPPH and PV over 8 weeks followed by creamer stored at 25 °C which had similar stability with slight differences. The creamer stored at 38 °C showed rapid degradation for all oxidation tests from week 2 onwards. Agglomeration technology has indicated to be effective in the stabilization of virgin coconut oil against lipid oxidation and prolonging its shelf-life.

2.
Article in English | MEDLINE | ID: mdl-36424800

ABSTRACT

BACKGROUND: One of the significant problems with peanut butter is oil separation when the product is opened after some time. The selection of vegetable oil, which acts as a stabiliser, plays a significant role in nut butter's textural and sensory quality. OBJECTIVE: This study aimed to optimise the formulation of cashew nut butter using response surface methodology (RSM). Four different vegetable oils, namely olive oil, virgin coconut oil, soybean oil and palm oil, were used to select efficient vegetable oil based on its effect on the physicochemical characteristics and sensory evaluation of cashew nut butter. METHOD: Thirteen formulations of cashew nut butter from RSM were produced to determine the optimum amount of selected oil (olive oil) and honey. RESULTS: Cashew nut butter stabilised with olive oil showed the best and similar values to commercial peanut butter with the lowest oil separation 3.91% and lower values of texture data of firmness (85.8 g), shear work (87.8 g.sec), stickiness (-27.44 g) and work of adhesion (-36.07 g.sec). The recommended volumes of olive oil and honey for cashew nut butter production were 1.29% and 6.16%, respectively. Consumers favor cashew nut butter, according to sensory analysis' overall acceptance. In terms of nutritional quality, cashew nut butter contains a high amount of fat (47.25%), followed by carbohydrates (24.51%) and protein (16.4%). CONCLUSION: The type of oil showed significant effects on the stability and spreadability of the produced cashew nut butter.

3.
Molecules ; 25(17)2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32858785

ABSTRACT

The application of the spray drying technique in the food industry for the production of a broad range of ingredients has become highly desirable compared to other drying techniques. Recently, the spray drying technique has been applied extensively for the production of functional foods, pharmaceuticals and nutraceuticals. Encapsulation using spray drying is highly preferred due to economic advantages compared to other encapsulation methods. Encapsulation of oils using the spray drying technique is carried out in order to enhance the handling properties of the products and to improve oxidation stability by protecting the bioactive compounds. Encapsulation of oils involves several parameters-including inlet and outlet temperatures, total solids, and the type of wall materials-that significantly affect the quality of final product. Therefore, this review highlights the application and optimization of the spray drying process for the encapsulation of oils used as food ingredients.


Subject(s)
Desiccation , Food Industry , Functional Food , Plant Oils/chemistry
4.
Food Sci Nutr ; 8(6): 2608-2618, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32566178

ABSTRACT

The aim of this study was to develop ice-cream product fortified with a Nigella sativa oil (NSO) nanoemulsion at four ratios (0% control, 3%, 5% and 10%). The NSO nanoemulsion stabilized by combinations of gum arabic, sodium caseinate, and Tween-20 at three ratios (5%, 10%, and 15%) of emulsifiers. The results showed that 10% nanoemulsion has the highest stability and zeta potential (-31.92), and lowest change of PDI (0.182). The 5% nanoemulsion showed the lowest particle size (175.83 µm). The result demonstrated that NSO nanoemulsion improved the ice-cream physical properties and consumer acceptability. Among the different samples, sensory evaluation revealed that ice-cream sample of 5% nanoemulsion received more acceptability from the panelist. This results demonstrated ice cream can be fortified with NSO nanoemulsion. This means it could be used as a functional ice cream with manifold NSO health benefits.

5.
Article in English | MEDLINE | ID: mdl-27836491

ABSTRACT

This report shows the partitioning and purification of alkaline extracellular lipase from Penicillium candidum (PCA 1/TT031) by solid-state fermentation (SSF). In the present analysis, some of the important parameters such as PEG concentration, PEG molecular mass, salt concentration and buffer concentration were optimised through the response surface methodology (RSM). The optimum aqueous two-phase systems (ATPS) environment consisted of 13.8% (w/w) phosphate buffer, 9.2% (w/w) PEG-3000 and 3.3% (w/w) NaCl at 25°C. The RSM approach was proved to be the most suitable methodology for the recovery of desired enzymes. In this method, the enzyme partitioned into the top phase of the PEG-buffer-NaCl ATPS. Under this experimental environment, the purification factor was found to be 33.9, the partition coefficient was 4.0 and the yield was found to be 84.0% of lipase. Moreover, the experimental and predicted results were in considerable agreement, which established the reliability and validity of the proposed model. The ATPS methodology is proven to be effective for the primary recovery of lipase at a low cost with a large loading capacity and possibility of linear scale up. In addition to using the existing methodologies for improving enzyme production, the use of statistical optimisation of the constituents of phases through RSM continues to be the basic and practical method.


Subject(s)
Lipase/isolation & purification , Liquid-Liquid Extraction/methods , Penicillium/enzymology , Polyethylene Glycols/chemistry , Analysis of Variance , Lipase/analysis , Penicillium/growth & development
6.
Article in English | MEDLINE | ID: mdl-27642353

ABSTRACT

The Nigella sativa L. popularly referred to as black seeds are widely used as a form of traditional nutrition and medicine. N. sativa seeds were used for the extraction of their oil by way of supercritical fluid extraction (SFE) and cold press (CP) to determine the physicochemical properties, antioxidant activity, and thermal behavior. The GC-MS results showed the primary constituents in the Nigella sativa oil (NSO) were Caryophyllene (17.47%) followed by thymoquinone (TQ) (11.80%), 1,4-Cyclohexadiene (7.17%), longifolene (3.5%), and carvacrol (1.82%). The concentration of TQ was found to be 6.63 mg/mL for oil extracted using SFE and 1.56 mg/mL for oil extracted by CP method. The antioxidant activity measured by DPPH and the IC50 was 1.58 mg/mL and 2.30 mg/mL for SFE oil and cold pressed oil, respectively. The ferric reducing/antioxidant power (FRAP) activity for SFE oil and CP oil was 538.67 mmol/100 mL and 329.00 mmol/100 mL, respectively. The total phenolic content (TPC) of SFE oil was 160.51 mg/100 mL and 94.40 mg/100 mL for CP oil presented as gallic acid equivalents (GAE). This research showed that a high level of natural antioxidants could be derived from NSO extracted by SFE.

SELECTION OF CITATIONS
SEARCH DETAIL
...